Integer Inequality Solutions 3
Let $ a $ and $ b $ be positive integers satisfying $ \frac{ab+1}{a+b} < \frac{3}{2} $. Find the maximum possible value of $ \frac{a^3b^3+1}{a^3+b^3} $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
The inequality $ \frac{ab + 1}{a + b} < \frac{3}{2} $ turn into
\[ab + 1 < \frac{3}{2} a + \frac{3}{2} b.\]Then
\[ab - \frac{3}{2} a - \frac{3}{2} b + 1 < 0.\]Applying Simon's Favorite Factoring Trick, we get
\[\left( a - \frac{3}{2} \right) \left( b - \frac{3}{2} \right) < \frac{5}{4}.\]Hence,
\[(2a - 3)(2b - 3) < 5.\]If $ a = 1, $ then the inequality becomes
\[3 - 2b < 5,\]which is satisfied for any positive integer $ b $. Similarly, if $ b = 1, $ then the inequality is satisfied for any positive integer $ a $.
Otherwise, $ a \ge 2 $ and $ b \ge 2, $ so $ 2a - 3 \ge 1 $ and $ 2b - 3 \ge 1 $. Note that both $ 2a - 3 $ and $ 2b - 3 $ are odd, so $ (2a - 3)(2b - 3) $ is odd, so their product can only be 1 or 3. This leads us to the solutions $ (a,b) = (2,2), $ $ (2,3), $ and $ (3,2) $.
If $ a = 1, $ then
\[\frac{a^3 b^3 + 1}{a^3 + b^3} = \frac{b^3 + 1}{1 + b^3} = 1.\]Similarly, if $ b = 1, $ then the expression also simplifies to 1.
For $ (a,b) = (2,2), $
\[\frac{a^3 b^3 + 1}{a^3 + b^3} = \frac{2^3 \cdot 2^3 + 1}{2^3 + 2^3} = \frac{65}{16}.\]For $ (a,b) = (2,3) $ or $ (3,2), $
\[\frac{a^3 b^3 + 1}{a^3 + b^3} = \frac{2^3 \cdot 3^3 + 1}{2^3 + 3^3} = \frac{31}{5}.\]Hence, the largest possible value of the expression is $ \boxed{\frac{31}{5}} $.