Iterative Function Condition

Let $ \lambda $ be a constant, $ 0 \le \lambda \le 4, $ and let $ f : [0,1] \to [0,1] $ be defined by \[f(x) = \lambda x(1 - x).\]Find the values of $ \lambda, $ $ 0 \le \lambda \le 4, $ for which there exists an $ x \in [0,1] $ such that $ f(x) \neq x $ but $ f(f(x)) = x $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$