Jogging Rate Fraction

One day, I decide to run to the park. On the way there, I run at a rate of $ x^2 $ miles per hour for $ 3 $ hours. On the way back, I take the same path and jog at a slower rate of $ 16 - 4x $ miles per hour so that it takes me $ 4 $ hours to get home. Given that $ x > 0 $, what is $ x $? Express your answer as a common fraction.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$