Jogging Rate Fraction
One day, I decide to run to the park. On the way there, I run at a rate of $ x^2 $ miles per hour for $ 3 $ hours. On the way back, I take the same path and jog at a slower rate of $ 16 - 4x $ miles per hour so that it takes me $ 4 $ hours to get home. Given that $ x > 0 $, what is $ x $? Express your answer as a common fraction.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$