Largest Prime Factor 2

$ 97 $ is the largest prime less than $ 100 $. What is the largest prime factor of $97!$ (97 factorial)? (Reminder: The number $n!$ is the product of the integers from 1 to $ n $. For example, $ 5!=5\cdot 4\cdot3\cdot2\cdot 1= 120 $.)

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$