Largest Rational Cosines
For a positive integer $ n $ and an angle $ \theta, $ $ \cos \theta $ is irrational, but $ \cos 2 \theta, $ $ \cos 3 \theta, $ $ \dots, $ $ \cos n \theta $ are all rational. Find the largest possible value of $ n $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
By sum-to-product,
\[\cos n \theta + \cos ((n - 2) \theta) = 2 \cos \theta \cos ((n - 1) \theta),\]or
\[\cos n \theta = 2 \cos \theta \cos ((n - 1) \theta) - \cos ((n - 2) \theta)\]for all $ n \ge 2 $. In particular, for $ n = 2, $
\[\cos 2 \theta = 2 \cos^2 \theta - 1,\]and for $ n = 3, $
\begin{align*}
\cos 3 \theta &= 2 \cos \theta \cos 2 \theta - \cos \theta \\
&= \cos \theta (2 \cos 2 \theta - 1).\end{align*}Suppose $ \cos \theta $ is irrational, and $ \cos 2 \theta $ and $ \cos 3 \theta $ are rational. Then $ 2 \cos 2 \theta - 1 $ is also rational, so we have a rational number that is the product of an irrational number and a rational number. The only way this can occur is if both rational numbers are 0. Thus, $ 2 \cos 2 \theta - 1 = 0 $. Then
\[2 (2 \cos^2 \theta - 1) - 1 = 0,\]so $ \cos^2 \theta = \frac{3}{4} $. Hence, $ \cos \theta = \pm \frac{\sqrt{3}}{2} $.
If $ \cos \theta = \frac{\sqrt{3}}{2}, $ then
\begin{align*}
\cos 2 \theta &= 2 \cos^2 \theta - 1 = \frac{1}{2}, \\
\cos 3 \theta &= 2 \cos \theta \cos 2 \theta - \cos \theta = 0, \\
\cos 4 \theta &= 2 \cos \theta \cos 3 \theta - \cos 2 \theta = -\frac{1}{2}, \\
\cos 5 \theta &= 2 \cos \theta \cos 4 \theta - \cos 3 \theta = -\frac{\sqrt{3}}{2},
\end{align*}so the largest possible value of $ n $ is 4.
Similarly, if $ \cos \theta = -\frac{\sqrt{3}}{2}, $ then
\begin{align*}
\cos 2 \theta &= 2 \cos^2 \theta - 1 = \frac{1}{2}, \\
\cos 3 \theta &= 2 \cos \theta \cos 2 \theta - \cos \theta = 0, \\
\cos 4 \theta &= 2 \cos \theta \cos 3 \theta - \cos 2 \theta = -\frac{1}{2}, \\
\cos 5 \theta &= 2 \cos \theta \cos 4 \theta - \cos 3 \theta = \frac{\sqrt{3}}{2},
\end{align*}so again the largest possible value of $ n $ is 4.
Therefore, the largest possible value of $ n $ is $ \boxed{4} $.