LCM and GCD Puzzle
The least common multiple of two positive integers is $ 7!$, and their greatest common divisor is $ 9 $. If one of the integers is $ 315 $, then what is the other? (Note that $7!$ means $ 7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot 1 $.)
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$