Line Intersection and Real Number
There exists a real number $ k $ such that the equation
\[\begin{pmatrix} 4 \\ -1 \end{pmatrix} + t \begin{pmatrix} 5 \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ k \end{pmatrix} + s \begin{pmatrix} -15 \\ -6 \end{pmatrix}\]has infinitely many solutions in $ t $ and $ s $. Find $ k $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
As $ t $ varies over all real numbers,
\[\begin{pmatrix} 4 \\ -1 \end{pmatrix} + t \begin{pmatrix} 5 \\ 2 \end{pmatrix}\]takes on all points on a line with direction $ \begin{pmatrix} 5 \\ 2 \end{pmatrix} $, and as $ s $ varies over all real numbers,
\[\begin{pmatrix} 8 \\ k \end{pmatrix} + s \begin{pmatrix} -15 \\ -6 \end{pmatrix}\]takes on all points on a line with direction $ \begin{pmatrix} -15 \\ -6 \end{pmatrix} $.
Since the given equation has infinitely many solutions in $ t $ and $ s $, geometrically, it means that the two lines intersect at infinitely many points. This is possible only if the lines coincide. Note that this can occur, because the direction vector $ \begin{pmatrix} 5 \\ 2 \end{pmatrix} $ of the first line is a scalar multiple of the direction vector $ \begin{pmatrix} -15 \\ -6 \end{pmatrix} $ of the second line.
So to find $ k $, we can set $ s $ to be any particular value we like. For convenience, we set $ s = 0 $. Then
\[\begin{pmatrix} 4 \\ -1 \end{pmatrix} + t \begin{pmatrix} 5 \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ k \end{pmatrix}.\]The left-hand side becomes
\[\begin{pmatrix} 5t + 4 \\ 2t - 1 \end{pmatrix} = \begin{pmatrix} 8 \\ k \end{pmatrix}.\]Then $ 5t + 4 = 8 $ and $ k = 2t - 1 $. Solving for $ t $, we find $ t = \frac{4}{5} $, so $ k = \boxed{\frac{3}{5}} $.