Logarithmic Function Domain
Let $ f(x) = \log_{10} \left(\sin(\pi x) \cdot \sin(2 \pi x) \cdot \sin (3 \pi x) \cdots \sin(8 \pi x)\right) $. The intersection of the domain of $ f(x) $ with the interval $ [0,1] $ is a union of $ n $ disjoint open intervals. What is $ n $?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
Let
\[g(x) = \sin (\pi x) \cdot \sin (2 \pi x) \cdot \sin (3 \pi x) \dotsm \sin (8 \pi x).\]Then the domain of $ f(x) $ is the set of all $ x $ such that $ g(x) > 0 $.
The points where $ g(x) = 0 $ are the points of the form $ x = \frac{k}{n}, $ where $ 1 \le n \le 8 $ and $ 0 \le k \le n $. Since
\[\sin (n \pi (1 - x)) = (-1)^{n + 1} \sin (n \pi x),\]we have that $ g(1 - x) = g(x) $. Also, $ g \left( \frac{1}{2} \right) = 0, $ so it suffices to consider the points where $ x \le \frac{1}{2} $. These points, increasing order, are
\[x_0 = 0, \ x_1 = \frac{1}{8}, \ x_2 = \frac{1}{7}, \ x_3 = \frac{1}{6}, \ x_4 = \frac{1}{5}, \ x_5 = \frac{1}{4}, \ x_6 = \frac{2}{7}, \ x_7 = \frac{1}{3}, \ x_8 = \frac{3}{8}, \ x_9 = \frac{2}{5}, \ x_{10} = \frac{3}{7}, \ x_{11} = \frac{1}{2}.\]As $ x $ increases from 0 to $ \frac{1}{2}, $ as $ x $ passes through each point $ x_i, $ a number of the factors of the form $ \sin (n \pi x) $ will change sign. We list the $ n $-values for each value of $ i $:
\[
\begin{array}{c|c}
i & n \\ \hline
1 & 8 \\
2 & 7 \\
3 & 6 \\
4 & 5 \\
5 & 4, 8 \\
6 & 7 \\
7 & 3, 6 \\
8 & 8 \\
9 & 5 \\
10 & 7 \\
11 & 2, 4, 6, 8
\end{array}
\]For example, as $ x $ increases, from being just less than $ x_1 = \frac{1}{8} $ to just greater than $ x_1, $ only $ \sin (8 \pi x) $ changes sign, from positive to negative. Since $ f(x) $ is positive on the interval $ (0,x_1), $ it will be negative on the interval $ (x_1,x_2), $ and so on. Thus, we can compute the sign of $ f(x) $ on each interval:
\[
\begin{array}{c|c}
i & \text{Sign of $ g(x) $ on $ (x_i,x_{i + 1}) $} \\ \hline
0 & + \\
1 & - \\
2 & + \\
3 & - \\
4 & + \\
5 & + \\
6 & - \\
7 & - \\
8 & + \\
9 & - \\
10 & + \\
11 & -
\end{array}
\]We see that $ f(x) $ is positive on 6 intervals less than $ \frac{1}{2}, $ so $ f(x) $ is positive on 6 intervals greater than $ \frac{1}{2} $. This gives us a total of $ \boxed{12} $ intervals.