Matrix Inverse Constants
Let $ \mathbf{M} = \begin{pmatrix} 1 & -4 \\ 1 & 2 \end{pmatrix} $. Find constants $ a $ and $ b $ so that \[\mathbf{M}^{-1} = a \mathbf{M} + b \mathbf{I}.\]Enter the ordered pair $ (a,b) $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$