Matrix Series Determinant Sum

Let $ M_n $ be the $ n \times n $ matrix with entries as follows: for $ 1 \le i \le n $, $ m_{i,i} = 10 $; for $ 1 \le i \le n - 1 $, $ m_{i+1,i} = m_{i,i+1} = 3 $; all other entries in $ M_n $ are zero. Let $ D_n $ be the determinant of matrix $ M_n $. Find \[\sum_{n=1}^{\infty} \frac{1}{8D_n+1}.\]Note: The determinant of the $ 1 \times 1 $ matrix $ [a] $ is $ a $, and the determinant of the $ 2 \times 2 $ matrix $ \left[ {\begin{array}{cc} a & b \\ c & d \\ \end{array} } \right] = ad - bc $; for $ n \ge 2 $, the determinant of an $ n \times n $ matrix with first row or first column $ a_1 $ $ a_2 $ $ a_3 $ $ \dots $ $ a_n $ is equal to $ a_1C_1 - a_2C_2 + a_3C_3 - \dots + (-1)^{n+1}a_nC_n $, where $ C_i $ is the determinant of the $ (n - 1) \times (n - 1) $ matrix formed by eliminating the row and column containing $ a_i $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$