Matrix Square Solution
Let $ \mathbf{M} = \begin{pmatrix} 0 & -5 \\ -2 & 4 \end{pmatrix} $. There exist scalars $ p $ and $ q $ such that \[\mathbf{M}^2 = p \mathbf{M} + q \mathbf{I}.\]Enter the ordered pair $ (p,q) $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$