Maximize Fractional Expression
Let $ w, $ $ x, $ $ y, $ and $ z, $ be positive real numbers. Find the maximum value of
\[\frac{wx + xy + yz}{w^2 + x^2 + y^2 + z^2}.\]
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
We want to prove an inequality of the form
\[\frac{wx + xy + yz}{w^2 + x^2 + y^2 + z^2} \le k,\]or $ w^2 + x^2 + y^2 + z^2 \ge \frac{1}{k} (wx + xy + yz) $. Our strategy is to divide $ w^2 + x^2 + y^2 + z^2 $ into several expressions, apply AM-GM to each expression, and come up with a multiple of $ wx + xy + yz $.
Since the expressions are symmetric with respect to $ w $ and $ z, $ and symmetric with respect to $ x $ and $ y, $ we try to divide $ w^2 + x^2 + y^2 + z^2 $ into
\[(w^2 + ax^2) + [(1 - a)x^2 + (1 - a)y^2] + (ay^2 + z^2).\]Then by AM-GM,
\begin{align*}
w^2 + ax^2 &\ge 2 \sqrt{(w^2)(ax^2)} = 2wx \sqrt{a}, \\
(1 - a)x^2 + (1 - a)y^2 &\ge 2(1 - a)xy, \\
ay^2 + z^2 &\ge 2 \sqrt{(ay^2)(z^2)} = 2yz \sqrt{a}.\end{align*}In order to get a multiple of $ wx + xy + yz, $ we want all the coefficient of $ wx, $ $ xy, $ and $ yz $ to be equal. Thus, we want an $ a $ so that
\[2 \sqrt{a} = 2(1 - a).\]Then $ \sqrt{a} = 1 - a $. Squaring both sides, we get $ a = (1 - a)^2 = a^2 - 2a + 1, $ so $ a^2 - 3a + 1 = 0 $. By the quadratic formula,
\[a = \frac{3 \pm \sqrt{5}}{2}.\]Since we want $ a $ between 0 and 1, we take
\[a = \frac{3 - \sqrt{5}}{2}.\]Then
\[w^2 + x^2 + y^2 + z^2 \ge 2(1 - a)(wx + xy + yz),\]or
\[\frac{wx + xy + yz}{w^2 + x^2 + y^2 + z^2} \le \frac{1}{2(1 - a)} = \frac{1}{\sqrt{5} - 1} = \frac{1 + \sqrt{5}}{4}.\]Equality occurs when $ w = x \sqrt{a} = y \sqrt{a} = z $. Hence, the maximum value is $ \boxed{\frac{1 + \sqrt{5}}{4}} $.