Maximum Product Expression
Let $ a, $ $ b, $ and $ c $ be nonnegative real numbers such that $ a + b + c = 1 $. Find the maximum value of
\[a(a + b)^2 (b + c)^3 (a + c)^4.\]
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
If we apply AM-GM to one instance of $ pa, $ two instances of $ q(a + b), $ three instances of $ r(b + c), $ and four instances of $ s(a + c), $ then we get
\begin{align*}
&a + p(a + b) + p(a + b) + q(b + c) + q(b + c) + q(b + c) + r(a + c) + r(a + c) + r(a + c) + r(a + c) \\
&\ge 10 \sqrt[10]{a \cdot p^2 (a + b)^2 \cdot q^3 (b + c)^3 \cdot r^4 (a + c)^4},
\end{align*}where $ p, $ $ q, $ and $ r $ are constants to be decided. In particular, we want these constants so that
\[a + p(a + b) + p(a + b) + q(b + c) + q(b + c) + q(b + c) + r(a + c) + r(a + c) + r(a + c) + r(a + c)\]is a multiple of $ a + b + c $. This expression simplifies to
\[(1 + 2p + 4r) a + (2p + 3q) b + (3q + 4r) c.\]Thus, we want $ 1 + 2p + 4r = 2p + 3q $ and $ 2p + 3q = 3q + 4r $. Then $ 2p = 4r, $ so $ p = 2r $. Then
\[1 + 8r = 3q + 4r,\]so $ q = \frac{4r + 1}{3} $.
For the equality case,
\[a = p(a + b) = q(b + c) = r(a + c).\]Then $ a = pa + pb, $ so $ b = \frac{1 - p}{p} \cdot a $. Also, $ a = ra + rc, $ so $ c = \frac{1 - r}{r} \cdot a $. Substituting into $ a = q(b + c), $ we get
\[a = q \left( \frac{1 - p}{p} \cdot a + \frac{1 - r}{r} \cdot a \right).\]Substituting $ p = 2r $ and $ q = \frac{4r + 1}{3}, $ we get
\[a = \frac{4r + 1}{3} \left( \frac{1 - 2r}{2r} \cdot a + \frac{1 - r}{4} \cdot a \right).\]Then
\[1 = \frac{4r + 1}{3} \left( \frac{1 - 2r}{2r} + \frac{1 - r}{r} \right).\]From this equation,
\[6r = (4r + 1)((1 - 2r) + 2(1 - r)),\]which simplifies to $ 16r^2 - 2r - 3 = 0 $. This factors as $ (2r - 1)(8r + 3) = 0 $. Since $ r $ is positive, $ r = \frac{1}{2} $.
Then $ p = 1 $ and $ q = 1, $ and AM-GM gives us
\[\frac{a + (a + b) + (a + b) + (b + c) + (b + c) + (b + c) + \frac{a + c}{2} + \frac{a + c}{2} + \frac{a + c}{2} + \frac{a + c}{2}}{10} \ge \sqrt[10]{\frac{a (a + b)^2 (b + c)^3 (a + c)^4}{16}}.\]Hence,
\[\sqrt[10]{\frac{a (a + b)^2 (b + c)^3 (a + c)^4}{16}} \le \frac{5(a + b + c)}{10} = \frac{1}{2}.\]Then
\[\frac{a (a + b)^2 (b + c)^3 (a + c)^4}{16} \le \frac{1}{2^{10}} = \frac{1}{1024},\]so
\[a (a + b)^2 (b + c)^3 (a + c)^4 \le \frac{16}{1024} = \frac{1}{64}.\]Equality occurs when
\[a = a + b = b + c = \frac{a + c}{2}.\]Along with the condition $ a + b + c = 1, $ we can solve to get $ a = \frac{1}{2}, $ $ b = 0, $ and $ c = \frac{1}{2} $. Hence, the maximum value is $ \boxed{\frac{1}{64}} $.