Maximum Product Value 2
Let $ x, $ $ y, $ and $ z $ be nonnegative real numbers such that $ x^2 + 2y^2 + 5z^2 = 22 $. Find the maximum value of
\[xy + xz + yz.\]
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
Suppose equality occurs when $ (x,y,z) = (x_0,y_0,z_0) $. To find and prove the minimum value, it looks like we're going to have to put together some inequalities like
\[x^2 + y^2 \ge 2xy.\]Remembering that equality occurs when $ x = x_0 $ and $ y = y_0, $ or $ \frac{x}{x_0} = \frac{y}{y_0} = 1, $ we form the inequality
\[\frac{x^2}{x_0^2} + \frac{y^2}{y_0^2} \ge \frac{2xy}{x_0 y_0}.\]Then
\[\frac{y_0}{2x_0} \cdot x^2 + \frac{x_0}{2y_0} \cdot y^2 \ge xy.\]Similarly,
\begin{align*}
\frac{z_0}{2x_0} \cdot x^2 + \frac{x_0}{2z_0} \cdot z^2 \ge xz, \\
\frac{z_0}{2y_0} \cdot y^2 + \frac{y_0}{2z_0} \cdot z^2 \ge xz.\end{align*}Adding these, we get
\[\frac{y_0 + z_0}{2x_0} \cdot x^2 + \frac{x_0 + z_0}{2y_0} \cdot y^2 + \frac{x_0 + y_0}{2z_0} \cdot z^2 \ge xy + xz + yz.\]Since we are given that $ x^2 + 2y^2 + 5z^2 = 22, $ we want $ x_0, $ $ y_0, $ and $ z_0 $ to satisfy
\[\frac{y_0 + z_0}{x_0} : \frac{x_0 + z_0}{y_0} : \frac{x_0 + y_0}{z_0} = 1:2:5.\]Let
\begin{align*}
y_0 + z_0 &= kx_0, \\
x_0 + z_0 &= 2ky_0, \\
x_0 + y_0 &= 5kz_0.\end{align*}Then
\begin{align*}
x_0 + y_0 + z_0 &= (k + 1) x_0, \\
x_0 + y_0 + z_0 &= (2k + 1) y_0, \\
x_0 + y_0 + z_0 &= (5k + 1) z_0.\end{align*}Let $ t = x_0 + y_0 + z_0 $. Then $ x_0 = \frac{t}{k + 1}, $ $ y_0 = \frac{t}{2k + 1}, $ and $ z_0 = \frac{t}{5k + 1}, $ so
\[\frac{t}{k + 1} + \frac{t}{2k + 1} + \frac{t}{5k + 1} = t.\]Hence,
\[\frac{1}{k + 1} + \frac{1}{2k + 1} + \frac{1}{5k + 1} = 1.\]This simplifies to $ 10k^3 - 8k - 2 = 0, $ which factors as $ 2(k - 1)(5k^2 + 5k + 1) = 0 $. Since $ k $ must be positive, $ k = 1 $.
Then $ x_0 = \frac{t}{2}, $ $ y_0 = \frac{t}{3}, $ and $ z_0 = \frac{t}{6} $. Substituting into $ x^2 + 2y^2 + 5z^2 = 22, $ we get
\[\frac{t^2}{4} + \frac{2t^2}{9} + \frac{5t^2}{36} = 22.\]Solving, we find $ t = 6, $ and the maximum value of $ xy + xz + yz $ is
\[\frac{t}{2} \cdot \frac{t}{3} + \frac{t}{2} \cdot \frac{t}{6} + \frac{t}{3} \cdot \frac{t}{6} = \frac{11}{36} t^2 = \boxed{11}.\]