Midpoint of Midpoints
Segment $ s_1 $ has endpoints at $ (3+\sqrt{2},5) $ and $ (4,7) $. Segment $ s_2 $ has endpoints at $ (6-\sqrt{2},3) $ and $ (3,5) $. Find the midpoint of the segment with endpoints at the midpoints of $ s_1 $ and $ s_2 $. Express your answer as $ (a,b) $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$