Minimum Quadratic Sum 3
Let $ x $ and $ y $ be nonzero real numbers such that
\[xy(x^2 - y^2) = x^2 + y^2.\]Find the minimum value of $ x^2 + y^2 $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
Let $ a $ and $ b $ be any real numbers. Then by the Trivial Inequality,
\[(a - b)^2 \ge 0.\]This expands as $ a^2 - 2ab + b^2 \ge 0, $ so
\[a^2 + b^2 \ge 2ab.\](This looks like AM-GM, but we want an inequality that works with all real numbers.)
Setting $ a = 2xy $ and $ b = x^2 - y^2, $ we get
\[(2xy)^2 + (x^2 - y^2)^2 \ge 2(2xy)(x^2 - y^2).\]The left-hand side simplifies to $ (x^2 + y^2)^2 $. From the given equation,
\[2(2xy)(x^2 - y^2) = 4(xy)(x^2 - y^2) = 4(x^2 + y^2),\]so $ (x^2 + y^2)^2 \ge 4(x^2 + y^2) $. Since both $ x $ and $ y $ are nonzero, $ x^2 + y^2 > 0, $ so we can divide both sides by $ x^2 + y^2 $ to get
\[x^2 + y^2 \ge 4.\]Equality occurs only when $ 2xy = x^2 - y^2, $ or $ y^2 + 2xy - x^2 = 0 $. By the quadratic formula,
\[y = \frac{-2 \pm \sqrt{4 - 4(1)(-1)}}{2} \cdot x = (-1 \pm \sqrt{2})x.\]Suppose $ y = (-1 + \sqrt{2})x $. Substituting into $ x^2 + y^2 = 4, $ we get
\[x^2 + (1 - 2 \sqrt{2} + 2) x^2 = 4.\]Then $ (4 - 2 \sqrt{2}) x^2 = 4, $ so
\[x^2 = \frac{4}{4 - 2 \sqrt{2}} = 2 + \sqrt{2}.\]So equality occurs, for instance, when $ x = \sqrt{2 + \sqrt{2}} $ and $ y = (-1 + \sqrt{2}) \sqrt{2 + \sqrt{2}} $. We conclude that the minimum value is $ \boxed{4} $.