Minimum Vector Magnitude
Let $ \mathbf{a}, $ $ \mathbf{b}, $ $ \mathbf{c} $ be vectors such that $ \|\mathbf{a}\| = 2, $ $ \|\mathbf{b}\| = 3, $ and
\[\mathbf{c} \times \mathbf{a} = \mathbf{b}.\]Find the smallest possible value of $ \|\mathbf{c} - \mathbf{a}\| $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
Let $ \theta $ be the angle between $ \mathbf{a} $ and $ \mathbf{c}, $ so
\[\|\mathbf{c} \times \mathbf{a}\| = \|\mathbf{a}\| \|\mathbf{c}\| \sin \theta.\]Then $ 3 = 2 \|\mathbf{c}\| \sin \theta, $ so $ \|\mathbf{c}\| = \frac{3}{2 \sin \theta} $.
Hence,
\begin{align*}
\|\mathbf{c} - \mathbf{a}\|^2 &= \|\mathbf{c}\|^2 - 2 \mathbf{a} \cdot \mathbf{c} + \|\mathbf{a}\|^2 \\
&= \frac{9}{4 \sin^2 \theta} - 2 \|\mathbf{a}\| \|\mathbf{c}\| \cos \theta + 4 \\
&= \frac{9}{4 \sin^2 \theta} - 2 \cdot 2 \cdot \frac{3}{2 \sin \theta} \cdot \cos \theta + 4 \\
&= \frac{9}{4 \sin^2 \theta} - \frac{6 \cos \theta}{\sin \theta} + 4.\end{align*}We can express this in terms of $ \cot \theta $:
\begin{align*}
\frac{9}{4 \sin^2 \theta} - \frac{6 \cos \theta}{\sin \theta} + 4 &= \frac{9 (\sin^2 \theta + \cos^2 \theta)}{4 \sin^2 \theta} - 6 \cot \theta + 4 \\
&= \frac{9}{4} + \frac{9}{4} \cot^2 \theta - 6 \cot \theta + 4 \\
&= \frac{9}{4} \cot^2 \theta - 6 \cot \theta + \frac{25}{4}.\end{align*}Completing the square in $ \cot \theta, $ we get
\[\|\mathbf{c} - \mathbf{a}\|^2 = \left( \frac{3}{2} \cot \theta - 2 \right)^2 + \frac{9}{4}.\]Hence, the smallest possible value of $ \|\mathbf{c} - \mathbf{a}\| $ is $ \boxed{\frac{3}{2}}, $ which is achieved when $ \cot \theta = \frac{4}{3}, $ or $ \tan \theta = \frac{3}{4} $.