Modular Difference Solution
If $ a\equiv 62\pmod{99} $ and $ b\equiv 75\pmod{99} $, then for what integer $ n $ in the set $ \{1000,1001,1002,\ldots,1097,1098\} $ is it true that $$a-b\equiv n\pmod{99}~?$$
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$