Modular Inverse Finding

Recall that if $ b $ is a residue $ \pmod{m} $, then the modular inverse of $ b $ is the residue $ c $ for which $ bc \equiv 1\pmod{m} $. The table below shows the inverses of the first 9 positive residues modulo 47. \begin{array}{c|ccccccccc} \text{$ b $} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline \text{inverse of $ \,b $} & 1 & 24 & 16 & 12 & 19 & 8 & 27 & 6 & 21 \end{array}Find the modular inverse of $ 35\pmod{47} $. Express your answer as an integer from $ 0 $ to $ 46 $, inclusive.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$