Modular Inverse Finding
Recall that if $ b $ is a residue $ \pmod{m} $, then the modular inverse of $ b $ is the residue $ c $ for which $ bc \equiv 1\pmod{m} $. The table below shows the inverses of the first 9 positive residues modulo 47. \begin{array}{c|ccccccccc} \text{$ b $} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline \text{inverse of $ \,b $} & 1 & 24 & 16 & 12 & 19 & 8 & 27 & 6 & 21 \end{array}Find the modular inverse of $ 35\pmod{47} $. Express your answer as an integer from $ 0 $ to $ 46 $, inclusive.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$