Modulo Congruence Puzzle 2

Given $ m\geq 2 $, denote by $ b^{-1} $ the inverse of $ b\pmod{m} $. That is, $ b^{-1} $ is the residue for which $ bb^{-1}\equiv 1\pmod{m} $. Sadie wonders if $ (a+b)^{-1} $ is always congruent to $ a^{-1}+b^{-1} \pmod{m} $. She tries the example $ a=2 $, $ b=3 $, and $ m=7 $. Let $ L $ be the residue of $ (2+3)^{-1}\pmod{7} $, and let $ R $ be the residue of $ 2^{-1}+3^{-1}\pmod{7} $, where $ L $ and $ R $ are integers from $ 0 $ to $ 6 $ (inclusive). Find $ L-R $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$