Modulo Inverse Problem
When working modulo $ m $, the notation $ a^{-1} $ is used to denote the residue $ b $ for which $ ab\equiv 1\pmod{m} $, if any exists. For how many integers $ a $ satisfying $ 0 \le a < 100 $ is it true that $ a(a-1)^{-1} \equiv 4a^{-1} \pmod{20} $?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$