Modulo Summation
If $ n>1 $ is an integer, the notation $ a\equiv b\pmod{n} $ means that $ (a-b) $ is a multiple of $ n $. Find the sum of all possible values of $ n $ such that both of the following are true: $ 171\equiv80\pmod{n} $ and $ 468\equiv13\pmod{n} $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$