Nested Polynomial Degree

Suppose that $ f(x) $ is a polynomial that has degree $ 6 $ and $ g(x) $ is a polynomial that has degree $ 3 $. If $ h(x) $ is also a polynomial such that $ f(g(x)) + g(h(x)) + h(f(x)) $ is a polynomial of degree $ 36 $, then what is the degree of the polynomial $ h $?

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$