Number Sum Difference
Consider the following two strings of digits: $ 11001010100101011 $ and $ 110100011000100 $. First consider them to be in base $ 10 $ and sum them to get $ n $. Then consider them to be in binary, sum them, write the answer in binary, then interpret the digits of the sum as if they were in base $ 10 $ to get $ m $. What is $ n-m $?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$