Number Sum Difference

Consider the following two strings of digits: $ 11001010100101011 $ and $ 110100011000100 $. First consider them to be in base $ 10 $ and sum them to get $ n $. Then consider them to be in binary, sum them, write the answer in binary, then interpret the digits of the sum as if they were in base $ 10 $ to get $ m $. What is $ n-m $?

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$