O'Hara Triple Calculation
Three positive integers $ a $, $ b, $ and $ x $ form an O'Hara triple $ (a,b,x) $ if $ \sqrt{a}+\sqrt{b}=x $. For example, $ (1,4,3) $ is an O'Hara triple because $ \sqrt{1}+\sqrt{4}=3 $. If $ (a,9,5) $ is an O'Hara triple, determine the value of $ a $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$