Optimal Ant Travel Path
An ant travels from the point $ A (0,-63) $ to the point $ B (0,74) $ as follows. It first crawls straight to $ (x,0) $ with $ x \ge 0 $, moving at a constant speed of $ \sqrt{2} $ units per second. It is then instantly teleported to the point $ (x,x) $. Finally, it heads directly to $ B $ at 2 units per second. What value of $ x $ should the ant choose to minimize the time it takes to travel from $ A $ to $ B $?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$