Optimal Ant Travel Path

An ant travels from the point $ A (0,-63) $ to the point $ B (0,74) $ as follows. It first crawls straight to $ (x,0) $ with $ x \ge 0 $, moving at a constant speed of $ \sqrt{2} $ units per second. It is then instantly teleported to the point $ (x,x) $. Finally, it heads directly to $ B $ at 2 units per second. What value of $ x $ should the ant choose to minimize the time it takes to travel from $ A $ to $ B $?

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$