Optimization With Constraints
Let $ a, $ $ b, $ $ c, $ and $ d $ be positive real numbers such that $ 36a + 4b + 4c + 3d = 25 $. Find the maximum value of \[a \times \sqrt{b} \times \sqrt[3]{c} \times \sqrt[4]{d}.\]
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$