Planetary Invasion Puzzle
In a solar system of $ n $ planets, Zorn the World Conqueror can invade $ m $ planets at a time, but once there are less than $ m $ free worlds left, he stops. If he invades $ 13 $ at a time then there are $ 6 $ left, and if he invades $ 14 $ at a time then there are $ 5 $ left. If this solar system has more than $ 100 $ planets, what is the smallest number of planets it could have?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$