Polynomial Coefficient Calculation 3
Let $ P(x) $ be a polynomial of degree 2011 such that $ P(1) = 0, $ $ P(2) = 1, $ $ P(4) = 2, $ $ \dots, $ $ P(2^{2011}) = 2011 $. Then the coefficient of $ x $ in $ P(x) $ can be expressed in the form \[a - \frac{1}{b^c},\]where $ a, $ $ b, $ $ c $ are positive integers, and $ b $ is prime. Find $ a + b + c $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$