Polynomial Degree Condition
Find the number of polynomials $ P(x) $ of degree 4, with real coefficients, that satisfy
\[P(x^2) = P(x) P(-x).\]
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
Let $ P(x) = ax^4 + bx^3 + cx^2 + dx + e $. Then $ P(x^2) = ax^8 + bx^6 + cx^4 + dx^2 + e $ and
\begin{align*}
P(x) P(-x) &= (ax^4 + bx^3 + cx^2 + dx + e)(ax^4 - bx^3 + cx^2 - dx + e) \\
&= (ax^4 + cx^2 + e)^2 - (bx^3 + dx)^2 \\
&= (a^2 x^8 + 2acx^6 + (2ae + c^2) x^4 + 2cex^2 + e^2) - (b^2 x^6 + 2bdx^4 + d^2 x^2) \\
&= a^2 x^8 + (2ac - b^2) x^6 + (2ae - 2bd + c^2) x^4 + (2ce - d^2) x^2 + e^2.\end{align*}Comparing coefficients, we get
\begin{align*}
a^2 &= a, \\
2ac - b^2 &= b, \\
2ae - 2bd + c^2 &= c, \\
2ce - d^2 &= d, \\
e^2 &= e.\end{align*}From $ a^2 = a, $ $ a = 0 $ or $ a = 1 $. But $ P(x) $ has degree 4, which means that the coefficient of $ x^4 $ cannot be 0, so $ a = 1 $.
From $ e^2 = e, $ $ e = 0 $ or $ e = 1 $.
Case 1: $ e = 0 $.
The equations become
\begin{align*}
2c - b^2 &= b, \\
-2bd + c^2 &= c, \\
-d^2 &= d.\end{align*}From $ -d^2 = d, $ $ d = 0 $ or $ d = -1 $. If $ d = 0, $ then $ c^2 = c, $ so $ c = 0 $ or $ c = 1 $.
If $ c = 0, $ then $ -b^2 = b, $ so $ b = 0 $ or $ b = -1 $. If $ c = 1, $ then $ 2 - b^2 = b, $ so $ b^2 + b - 2 = (b - 1)(b + 2) = 0, $ which means $ b = 1 $ or $ b = -2 $.
If $ d = -1, $ then
\begin{align*}
2c - b^2 &= b, \\
2b + c^2 &= c.\end{align*}Adding these equations, we get $ 2b + 2c - b^2 + c^2 = b + c, $ so
\[b + c - b^2 + c^2 = (b + c) + (b + c)(-b + c) = (b + c)(1 - b + c) = 0.\]Hence, $ b + c = 0 $ or $ 1 - b + c = 0 $.
If $ b + c = 0, $ then $ c = -b $. Substituting into $ 2c - b^2 = b, $ we get $ -2b - b^2 = b, $ so $ b^2 + 3b = b(b + 3) = 0 $. Hence, $ b = 0 $ (and $ c = 0 $) or $ b = -3 $ (and $ c = 3 $).
If $ 1 - b + c = 0, $ then $ c = b - 1 $. Substituting into $ 2c - b^2 = b, $ we get $ 2b - 2 - b^2 = b, $ so $ b^2 - b + 2 = 0 $. This quadratic has no real roots.
Case 2: $ e = 1 $.
The equations become
\begin{align*}
2c - b^2 &= b, \\
2 - 2bd + c^2 &= c, \\
2c - d^2 &= d.\end{align*}We have that $ 2c = b^2 + b = d^2 + d, $ so
\[b^2 - d^2 + b - d = (b - d)(b + d) + (b - d) = (b - d)(b + d + 1) = 0.\]Hence, $ b = d $ or $ b + d + 1 = 0 $.
If $ b + d + 1 = 0, $ then $ d = -b - 1 $. Substituting into $ 2 - 2bd + c^2 = c, $ we get
\[2 - 2b(-b - 1) + c^2 = c,\]so $ 2b^2 + 2b + c^2 - c + 2 = 0 $. Completing the square in $ b $ and $ c, $ we get
\[2 \left( b + \frac{1}{2} \right)^2 + \left( c - \frac{1}{2} \right)^2 + \frac{5}{4} = 0,\]so there are no real solutions where $ b + d + 1 = 0 $.
If $ b = d, $ then the equations become
\begin{align*}
2c - b^2 &= b, \\
2 - 2b^2 + c^2 &= c.\end{align*}From the first equation, $ c = \frac{b^2 + b}{2} $. Substituting into the second equation, we get
\[2 - 2b^2 + \left( \frac{b^2 + b}{2} \right)^2 = \frac{b^2 + b}{2}.\]This simplifies to $ b^4 + 2b^3 - 9b^2 - 2b + 8 = 0, $ which factors as $ (b + 4)(b + 1)(b - 1)(b - 2) = 0 $. Hence, the possible values of $ b $ are $ -4 $, $ -1, $ 1, and 2, with corresponding values of $ c $ of 6, 0, 1, and 3, respectively.
Thus, there are $ \boxed{10} $ polynomials $ P(x), $ namely
\begin{align*}
x^4 &= x^4, \\
x^4 - x^3 &= x^3(x - 1), \\
x^4 + x^3 + x^2 &= x^2 (x^2 + x + 1), \\
x^4 - 2x^3 + x^2 &= x^2 (x - 1)^2, \\
x^4 - x &= x(x - 1)(x^2 + x + 1), \\
x^4 - 3x^3 + 3x^2 - x &= x(x - 1)^3, \\
x^4 - 4x^2 + 6x^2 - 4x + 1 &= (x - 1)^4, \\
x^4 - x^3 - x + 1 &= (x - 1)^2 (x^2 + x + 1), \\
x^4 + x^3 + x^2 + x + 1 &= x^4 + x^3 + x^2 + x + 1, \\
x^4 + 2x^3 + 3x^2 + 2x + 1 &= (x^2 + x + 1)^2.\end{align*}