Polynomial Function Ratio
There exists a polynomial $ P $ of degree 5 with the following property: If $ z $ is a complex number such that $ z^5 + 2004z = 1, $ then $ P(z^2) = 0 $. Calculate
\[\frac{P(1)}{P(-1)}.\]
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
Let $ r_1, $ $ r_2, $ $ r_3, $ $ r_4, $ $ r_5 $ be the roots of $ Q(z) = z^5 + 2004z - 1 $. Then
\[Q(z) = (z - r_1)(z - r_2)(z - r_3)(z - r_4)(z - r_5)\]and
\[P(z) = c(z - r_1^2)(z - r_2^2)(z - r_3^2)(z - r_4^2)(z - r_5^2)\]for some constant $ c $.
Hence,
\begin{align*}
\frac{P(1)}{P(-1)} &= \frac{c(1 - r_1^2)(1 - r_2^2)(1 - r_3^2)(1 - r_4^2)(1 - r_5^2)}{c(-1 - r_1^2)(-1 - r_2^2)(-1 - r_3^2)(-1 - r_4^2)(-1 - r_5^2)} \\
&= -\frac{(1 - r_1^2)(1 - r_2^2)(1 - r_3^2)(1 - r_4^2)(1 - r_5^2)}{(1 + r_1^2)(1 + r_2^2)(1 + r_3^2)(1 + r_4^2)(1 + r_5^2)} \\
&= -\frac{(1 - r_1)(1 - r_2)(1 - r_3)(1 - r_4)(1 - r_5)(1 + r_1)(1 + r_2)(1 + r_3)(1 + r_4)(1 + r_5)}{(i + r_1)(i + r_2)(i + r_3)(i + r_4)(i + r_5)(-i + r_1)(-i + r_2)(-i + r_3)(-i + r_4)(-i + r_5)} \\
&= \frac{(1 - r_1)(1 - r_2)(1 - r_3)(1 - r_4)(1 - r_5)(-1 - r_1)(-1 - r_2)(-1 - r_3)(-1 - r_4)(-1 - r_5)}{(-i - r_1)(-i - r_2)(-i - r_3)(-i - r_4)(-i - r_5)(-i - r_1)(i - r_2)(i - r_3)(i - r_4)(i - r_5)} \\
&= \frac{Q(1) Q(-1)}{Q(i) Q(-i)} \\
&= \frac{(1 + 2004 - 1)(-1 - 2004 - 1)}{(i^5 + 2004i - 1)((-i)^5 - 2004i - 1)} \\
&= \frac{(2004)(-2006)}{(-1 + 2005i)(-1 - 2005i))} \\
&= \frac{(2004)(-2006)}{1^2 + 2005^2} \\
&= \boxed{-\frac{2010012}{2010013}}.\end{align*}