Polynomial Integer Solutions
Let $ P(x) $ be a polynomial with integer coefficients that satisfies $ P(17)=10 $ and $ P(24)=17 $. Given that $ P(n)=n+3 $ has two distinct integer solutions $ n_1 $ and $ n_2, $ find $ n_1 $ and $ n_2 $. (Give your answer as a comma-separated list, in either order; for example, "2, 5" or "6, -3".)
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$