Polynomial Integer Solutions

Let $ P(x) $ be a polynomial with integer coefficients that satisfies $ P(17)=10 $ and $ P(24)=17 $. Given that $ P(n)=n+3 $ has two distinct integer solutions $ n_1 $ and $ n_2, $ find $ n_1 $ and $ n_2 $. (Give your answer as a comma-separated list, in either order; for example, "2, 5" or "6, -3".)

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$