Polynomial Root Sum
Let $ a, $ $ b, $ $ c, $ $ d, $ and $ e $ be the distinct roots of the equation $ x^5 + 7x^4 - 2 = 0 $. Find
\begin{align*}
&\frac{a^5}{(a - b)(a - c)(a - d)(a - e)} + \frac{b^5}{(b - a)(b - c)(b - d)(b - e)} \\
&\quad + \frac{c^5}{(c - a)(c - b)(c - d)(c - e)} + \frac{d^5}{(d - a)(d - b)(d - c)(d - e)} \\
&\quad + \frac{e^5}{(e - a)(e - b)(e - c)(e - d)}.\end{align*}
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
Consider the polynomial
\begin{align*}
p(x) &= \frac{a^5 (x - b)(x - c)(x - d)(x - e)}{(a - b)(a - c)(a - d)(a - e)} + \frac{b^5 (x - a)(x - c)(x - d)(x - e)}{(b - a)(b - c)(b - d)(b - e)} \\
&\quad + \frac{c^5 (x - a)(x - b)(x - d)(x - e)}{(c - a)(c - b)(c - d)(c - e)} + \frac{d^5 (x - a)(x - b)(x - c)(x - e)}{(d - a)(d - b)(d - c)(d - e)} \\
&\quad + \frac{e^5 (x - a)(x - b)(x - c)(x - d)}{(e - a)(e - b)(e - c)(e - d)}.\end{align*}Note that $ p(x) $ is a polynomial of degree at most 4. Also, $ p(a) = a^5, $ $ p(b) = b^5, $ $ p(c) = c^5, $ $ p(d) = d^5, $ and $ p(e) = e^5 $. This might lead us to conclude that $ p(x) = x^5, $ but as we just observed, $ p(x) $ is a polynomial of degree 4.
So, consider the polynomial
\[q(x) = x^5 - p(x).\]The polynomial $ q(x) $ becomes 0 at $ x = a, $ $ b, $ $ c, $ $ d, $ and $ e $. Therefore,
\[q(x) = x^5 - p(x) = (x - a)(x - b)(x - c)(x - d)(x - e) r(x)\]for some polynomial $ r(x) $.
Since $ p(x) $ is a polynomial of degree at most 4, $ q(x) = x^5 - p(x) $ is a polynomial of degree 5. Furthermore, the leading coefficient is 1. Therefore, $ r(x) = 1, $ and
\[q(x) = x^5 - p(x) = (x - a)(x - b)(x - c)(x - d)(x - e).\]Then
\[p(x) = x^5 - (x - a)(x - b)(x - c)(x - d)(x - e),\]which expands as
\[p(x) = (a + b + c + d + e) x^4 + \dotsb.\]This is important, because the expression given in the problem is the coefficient of $ x^4 $ in $ p(x) $. Hence, the expression given in the problem is equal to $ a + b + c + d + e $. By Vieta's formulas, this is $ \boxed{-7} $.