Polynomial Roots Evaluation
Consider the polynomials $ P(x) = x^6-x^5-x^3-x^2-x $ and $ Q(x)=x^4-x^3-x^2-1 $. Given that $ z_1, z_2, z_3 $, and $ z_4 $ are the roots of $ Q(x)=0 $, find $ P(z_1)+P(z_2)+P(z_3)+P(z_4) $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$