Polynomial Roots Set Size
A set $ S $ is constructed as follows. To begin, $ S = \{0,10\} $. Repeatedly, as long as possible, if $ x $ is an integer root of some nonzero polynomial $ a_{n}x^n + a_{n-1}x^{n-1} + \dots + a_{1}x + a_0 $ for some $ n\geq{1} $, all of whose coefficients $ a_i $ are elements of $ S $, then $ x $ is put into $ S $. When no more elements can be added to $ S $, how many elements does $ S $ have?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$