Polynomial Roots Set Size

A set $ S $ is constructed as follows. To begin, $ S = \{0,10\} $. Repeatedly, as long as possible, if $ x $ is an integer root of some nonzero polynomial $ a_{n}x^n + a_{n-1}x^{n-1} + \dots + a_{1}x + a_0 $ for some $ n\geq{1} $, all of whose coefficients $ a_i $ are elements of $ S $, then $ x $ is put into $ S $. When no more elements can be added to $ S $, how many elements does $ S $ have?

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$