Polynomial Sum Sequence
Let $ p(x) $ be a polynomial of degree 4 such that $ p(55) = p(83) = p(204) = p(232) = 8 $ and $ p(103) = 13 $. Find \[p(1) - p(2) + p(3) - p(4) + \dots + p(285) - p(286).\]
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$