Polynomial Value Sum 2
Let $ g(x) = x^2 - 11x + 30, $ and let $ f(x) $ be a polynomial such that \[g(f(x)) = x^4 - 14x^3 + 62x^2 - 91x + 42.\]Find the sum of all possible values of $ f(10^{100}) $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$