Polynomial Zero Sum Property

A polynomial \[ P(x)=c_{2004}x^{2004}+ c_{2003}x^{2003}+ \cdots+ c_{1}x+ c_{0} \]has real coefficients with $ c_{2004} \neq 0 $ and 2004 distinct complex zeros $ z_{k}=a_{k}+ b_{k}i $, $ 1 \leq k \leq 2004 $ with $ a_k $ and $ b_k $ real, $ a_1 = b_1 = 0 $, and \[ \sum_{k=1}^{2004} a_{k}= \sum_{k=1}^{2004} b_{k}.\]Which of the following quantities can be a nonzero number? A) $ c_0 $. B) $ c_{2003} $. C) $ b_{2}b_{3} \dotsm b_{2004} $. D) $ \sum_{k=1}^{2004}a_{k} $. E) $ \sum_{k=1}^{2004}c_{k} $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$