Polynomial Zeros Sum
There are nonzero integers $ a $, $ b $, $ r $, and $ s $ such that the complex number $ r+si $ is a zero of the polynomial $ P(x)={x}^{3}-a{x}^{2}+bx-65 $. For each possible combination of $ a $ and $ b $, let $ {p}_{a,b} $ be the sum of the zeros of $ P(x) $. Find the sum of the $ {p}_{a,b} $'s for all possible combinations of $ a $ and $ b $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$