Polynomial Zeros Sum

There are nonzero integers $ a $, $ b $, $ r $, and $ s $ such that the complex number $ r+si $ is a zero of the polynomial $ P(x)={x}^{3}-a{x}^{2}+bx-65 $. For each possible combination of $ a $ and $ b $, let $ {p}_{a,b} $ be the sum of the zeros of $ P(x) $. Find the sum of the $ {p}_{a,b} $'s for all possible combinations of $ a $ and $ b $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$