Positive Integers Property Count
Find the number of positive integers $ n \ge 3 $ that have the following property: If $ x_1, $ $ x_2, $ $ \dots, $ $ x_n $ are real numbers such that $ x_1 + x_2 + \dots + x_n = 0, $ then \[x_1 x_2 + x_2 x_3 + \dots + x_{n - 1} x_n + x_n x_1 \le 0.\]
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$