Prime Number Subsets

How many non-empty subsets of $ \{ 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 \} $ consist entirely of prime numbers? (We form a subset of the group of numbers by choosing some number of them, without regard to order. So, $ \{1,2,3\} $ is the same as $ \{3,1,2\} $.)

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$