Prime Number Subsets
How many non-empty subsets of $ \{ 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 \} $ consist entirely of prime numbers? (We form a subset of the group of numbers by choosing some number of them, without regard to order. So, $ \{1,2,3\} $ is the same as $ \{3,1,2\} $.)
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$