Radical Sum Simplification
Simplify $ \frac{3}{\sqrt[5]{16}}+\frac{1}{\sqrt{3}} $ and rationalize the denominator. The result can be expressed in the form $ \frac{a^2\sqrt[5]{b}+b\sqrt{a}}{ab} $, where $ a $ and $ b $ are integers. What is the value of the sum $ a+b $?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$