Rational Function Generation

The function $ f(x) = x + 1 $ generates the sequence \[1, \ 2, \ 3, \ 4, \ \dots\]in the sense that plugging any number in the sequence into $ f(x) $ gives the next number in the sequence. What rational function $ g(x) $ generates the sequence \[\frac{1}{2}, \ \frac{2}{3}, \ \frac{3}{4}, \ \frac{4}{5}, \ \dots\]in this manner?

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$