Real Roots Summation
Find the sum of the real roots of $ x^4 - 80x - 36 = 0 $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
We seek to factor $ x^4 - 80x - 36 $. Using the Integer Root theorem, we can determine that there are no integer roots, so we look for a factorization into two quadratics. Assume a factorization of the form
\[(x^2 + Ax + B)(x^2 - Ax + C) = x^4 - 80x - 36.\](We take $ A $ as the coefficient of $ x $ in the first quadratic; then the coefficient of $ x $ in the second quadratic must be $ -A, $ to make the coefficent of $ x^3 $ in their product to be 0.)
Expanding, we get
\[(x^2 + Ax + B)(x^2 - Ax + C) = x^4 + (-A^2 + B + C) x^2 + (-AB + AC) x + BC.\]Matching coefficients, we get
\begin{align*}
-A^2 + B + C &= 0, \\
-AB + AC &= -80, \\
BC &= -36.\end{align*}From the second equation, $ B - C = \frac{80}{A} $. From the first equation, $ B + C = A^2 $. Squaring these equations, we get
\begin{align*}
B^2 + 2BC + C^2 &= A^4, \\
B^2 - 2BC + C^2 &= \frac{6400}{A^2}.\end{align*}Subtracting these, we get
\[A^4 - \frac{6400}{A^2} = 4BC = -144.\]Then $ A^6 - 6400 = -144A^2, $ so $ A^6 + 144A^2 - 6400 = 0 $. This factors as $ (A^2 - 16)(A^4 + 16A^2 + 400) = 0, $ so $ A = \pm 4 $.
Taking $ A = 4, $ we get $ B - C = 20 $ and $ B + C = 16, $ so $ B = 18 $ and $ C = -2 $. Thus,
\[x^4 - 80x - 36 = (x^2 + 4x + 18)(x^2 - 4x - 2).\]The quadratic factor $ x^4 + 4x + 18 $ has no real roots. The quadratic factor $ x^2 - 4x - 2 $ has real roots, and their sum is $ \boxed{4} $.