Recursive Function Sequence
Let $ f(m,1) = f(1,n) = 1 $ for $ m \geq 1, n \geq 1, $ and let $ f(m,n) = f(m-1,n) + f(m,n-1) + f(m-1,n-1) $ for $ m > 1 $ and $ n > 1 $. Also, let $$S(k) = \sum_{a+b=k} f(a,b), \text{ for } a \geq 1, b \geq 1.$$Note: The summation notation means to sum over all positive integers $ a,b $ such that $ a+b=k $. Given that $$S(k+2) = pS(k+1) + qS(k) \text{ for all } k \geq 2,$$for some constants $ p $ and $ q $, find $ pq $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$