Recursive Function Sequence

Let $ f(m,1) = f(1,n) = 1 $ for $ m \geq 1, n \geq 1, $ and let $ f(m,n) = f(m-1,n) + f(m,n-1) + f(m-1,n-1) $ for $ m > 1 $ and $ n > 1 $. Also, let $$S(k) = \sum_{a+b=k} f(a,b), \text{ for } a \geq 1, b \geq 1.$$Note: The summation notation means to sum over all positive integers $ a,b $ such that $ a+b=k $. Given that $$S(k+2) = pS(k+1) + qS(k) \text{ for all } k \geq 2,$$for some constants $ p $ and $ q $, find $ pq $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$