Recursive Sequence Formula
The sequence $ (a_n) $ is defined by $ a_1 = 14 $ and \[a_n = 24 - 5a_{n - 1}\]for all $ n \ge 2 $. Then the formula for the $ n $th term can be expressed in the form $ a_n = p \cdot q^n + r, $ where $ p, $ $ q, $ and $ r $ are constants. Find $ p + q + r $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$