Recursive Sequence Product
Let $ a_{0} = 2 $, $ a_{1} = 5 $, and $ a_{2} = 8 $, and for $ n > 2 $ define $ a_{n} $ recursively to be the remainder when $ 4(a_{n-1} + a_{n-2} + a_{n-3}) $ is divided by $ 11 $. Find $ a_{2018} \cdot a_{2020} \cdot a_{2022} $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$