Recursive Sequence Sum 1
Define a sequence recursively by $ F_{0}=0,~F_{1}=1, $ and $ F_{n} $ be the remainder when $ F_{n-1}+F_{n-2} $ is divided by $ 3, $ for all $ n\geq 2 $. Thus the sequence starts $ 0,1,1,2,0,2,\ldots $ What is $ F_{2017}+F_{2018}+F_{2019}+F_{2020}+F_{2021}+F_{2022}+F_{2023}+F_{2024}?$.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$