Recursive Sequence Sum 2

Consider the sequence of numbers: $ 4,7,1,8,9,7,6,\dots $ For $ n>2 $, the $ n $-th term of the sequence is the units digit of the sum of the two previous terms. Let $ S_n $ denote the sum of the first $ n $ terms of this sequence. Find the smallest value of $ n $ for which $ S_n>10,000 $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$