Recursive Sequence Sum 2
Consider the sequence of numbers: $ 4,7,1,8,9,7,6,\dots $ For $ n>2 $, the $ n $-th term of the sequence is the units digit of the sum of the two previous terms. Let $ S_n $ denote the sum of the first $ n $ terms of this sequence. Find the smallest value of $ n $ for which $ S_n>10,000 $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$