Repeating Decimal Pattern
When converting $ \frac{31}{11111} $ to a decimal, the decimal turns out to be a repeating decimal. How many digits repeat in this repeating decimal? For example, if you get the repeating decimal $ 0.\overline{123}, $ then your answer should be $ 3, $ and if you get $ 0.436\overline{7}, $ your answer should be $ 1.$
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$