Repeating Decimal Pattern

When converting $ \frac{31}{11111} $ to a decimal, the decimal turns out to be a repeating decimal. How many digits repeat in this repeating decimal? For example, if you get the repeating decimal $ 0.\overline{123}, $ then your answer should be $ 3, $ and if you get $ 0.436\overline{7}, $ your answer should be $ 1.$

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$